Ewa ŁOBOS*

*Faculty of Applied Mathematics, Silesian University of Technology, Gliwice, Poland

Discontinuities of real-valued functions of one real variable

Abstract

The paper shows how to identify discontinuities of real-valued functions of one real variable and how to determine types of discontinuities. There are a few practical tasks with step-by-step solutions.

keywords: real-valued function of one real variable, types of discontinuities, continuity.

1. Definitions

The continuity of functions is a crucial concept in calculus but some types of discontinuities appear in many theorems so it is important to quickly identify the discontinuities. The theory in this paper is based on [2]. More practical tasks may be found in [1].

We consider a real-valued function of one real variable, i.e. $f: D_{f} \rightarrow \mathbb{R}, D_{f} \subset \mathbb{R}$.
Definition 1. Function f has the discontinuity at x_{0} if and only if exactly one of the following conditions holds:

- x_{0} is the cluster point of D_{f} and $x_{0} \notin D_{f}$,
- f is discontinuous at x_{0}.

Point x_{0} is then called the point of discontinuity of function f.

In the first case we can try to calculate the limit of f at x_{0} (this limit exists or does not exist) but f is not defined at x_{0}. In the second case $x_{0} \in D_{f}$ but the limit of f at x_{0} does not exist or is different than $f\left(x_{0}\right)$. In three special cases, the discontinuities have their own names, i.e. removable discontinuity, finite jump, and infinite jump. Let us see their definitions.

Definition 2. Function f has a removable discontinuity at x_{0} if and only if $\lim _{x \rightarrow x_{0}} f(x)$ exists as a finite value but it is different than $f\left(x_{0}\right)$ or function f is undefined at x_{0}.

If a function has removable discontinuity at x_{0}, then we can easily define almost everywhere identical function which is continuous at x_{0}. A function with removable discontinuities is presented in Fig. 1.

[^0]

Fig. 1. The graph of function with removable discontinuities at a, b, c, and d

Definition 3. Function f has a finite jump at x_{0} if and only if both one-sided limits of f at x_{0} are proper and different.

Fig. 2 shows a function with three finite jumps.

Fig. 2. The graph of function with finite jumps at a, b, and c

Fig. 3. The graph of function with infinite jumps at a, b, c, and d

Definition 4. Function f has an infinite jump at x_{0} if and only if at least one of one-sided limits of f at x_{0} is improper.

If function f has infinite jump at x_{0}, then line $x=x_{0}$ is the horizontal asymptote of curve $y=f(x)$. Infinite jumps are presented in Fig. 3.

Removable discontinuities and finite jumps are called discontinuities of the I type, other - discontinuities of the II type. Note that the class of discontinuities of the II type is very wide, it contains not only infinite jumps. For example, function $f(x)=\sin \frac{1}{x}$ has the II type discontinuity at 0 because both one-sided limits at 0 do not exist - in each deleted neighbourhood of 0 this function takes on infinitely many times all values form $[-1,1]$. Another popular example is the Dirichlet function:

$$
D(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \in \mathbb{Q} \\
0 & \text { if } & x \in \mathbb{R} \backslash \mathbb{Q}
\end{array}\right.
$$

If x_{0} is any real number, then both $\lim _{x \rightarrow x_{0}^{-}} D(x)$ and $\lim _{x \rightarrow x_{0}^{+}} D(x)$ do not exist, so the Dirichlet function has the II type discontinuity at each point.

2. Examples

Example 1. Determine types of discontinuities of function

$$
f(x)=\frac{\sin (x-3)}{x^{2}-4 x+3}
$$

We have $f(x)=\frac{\sin (x-3)}{(x-3)(x-1)}$ so $D_{f}=\mathbb{R} \backslash\{1,3\}$. Function f is continuous on its domain (in the top we have the composition of two continuous functions, in the bottom - the polynomial).

Points 1 and 3 do not belong to domain but they are cluster points of domain so f has discontinuities at 1 and at 3 . In order to determine their types, we have to calculate limits of f at these points.

We have

$$
\lim _{x \rightarrow 3} f(x)=\lim _{x \rightarrow 3} \frac{\sin (x-3)}{(x-3)(x-1)} \stackrel{\left[\frac{0}{0}\right]}{=} \lim _{x \rightarrow 3} \frac{\sin (x-3)}{x-3} \cdot \frac{1}{x-1}=1 \cdot \frac{1}{2}=\frac{1}{2}
$$

because if $x \rightarrow 3$ then $x-1 \rightarrow 2$ and $x-3 \rightarrow 0$ (we apply formula $\lim _{t \rightarrow 0} \frac{\sin t}{t}=1$). Hence f has removable discontinuity (I type) at 3 .

For the limit at 1 we have to calculate one-sided limits because there is not an indeterminate form (top tends to some number different than zero, bottom tends to zero). We obtain

$$
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{\sin (x-3)}{(x-3)(x-1)}=\left[\frac{\sin (-2)}{-2 \cdot 0^{+}}\right]=+\infty
$$

because $\sin (-1)=-\sin 1<0$ (look at the graph of sine function) and if $x \rightarrow 1^{+}$(which means that x is close to 1 and greater than 1) then $x-1$ tends to 0 (but is positive).

Analogously $\left(x \rightarrow 1^{-}\right.$means that x is close to 1 and less than 1$)$:

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \frac{\sin (x-3)}{(x-3)(x-1)}=\left[\frac{\sin (-2)}{-2 \cdot 0^{-}}\right]=-\infty
$$

Therefore f has infinite jump (the discontinuity of II type) at 1 .

Remember!

A continuous function may posses discontinuities.

The graph of this function is presented in Fig. 4.

Fig. 4. The graph of function from Example 1

Example 2. Determine types of discontinuities of function

$$
f(x)=\operatorname{arccot} \frac{x-1}{3-x}
$$

We see that $D_{f}=\mathbb{R} \backslash\{3\}$. Function f is continuous (as the composition of two continuous functions: arccot and the rational function). Hence f has the discontinuity at 3 .

If $x \rightarrow 3^{+}(x$ is close to 3 but greater than 3$)$, then:

- $x-1 \rightarrow 2$
- $3-x \rightarrow 0^{-}$
- $\frac{x-1}{3-x} \rightarrow-\infty$ because we have $\left[\frac{2}{0^{-}}\right]$
- $\operatorname{arccot} \frac{x-1}{3-x} \rightarrow \pi$
so $\lim _{x \rightarrow 3^{+}} f(x)=\lim _{x \rightarrow 3^{+}} \operatorname{arccot} \frac{x-1}{3-x}=\pi$.
If $x \rightarrow 3^{-}(x$ is close to 3 but less than 3$)$, then:
- $x-1 \rightarrow 2$
- $3-x \rightarrow 0^{+}$
- $\frac{x-1}{3-x} \rightarrow+\infty$ because we have $\left[\frac{2}{0^{+}}\right]$
- $\operatorname{arccot} \frac{x-1}{3-x} \rightarrow 0$
so $\lim _{x \rightarrow 3^{-}} f(x)=\lim _{x \rightarrow 3^{-}} \operatorname{arccot} \frac{x-1}{3-x}=0$.
Therefore f has I type discontinuity (finite jump) at 3. The graph of this function is presented in Fig. 5.

Fig. 5. The graph of function from Example 2

Example 3. Determine types of discontinuities of function

$$
f(x)=\left\{\begin{array}{lll}
\sqrt{e}-(1-x)^{\frac{1}{x^{2}-2 x}} & \text { if } & x<0 \\
\arcsin x & \text { if } & x \in[0,1] \\
\ln (x-1) & \text { if } & x>1
\end{array}\right.
$$

Fig. 6. The graph of function from Example 3

We see that $D_{f}=\mathbb{R}$. Function f is continuous on intervals: $(-\infty, 0),(0,1),(1,+\infty)$. It may be discontinuous at 0 or 1 , we have to check it.

Since

$$
\begin{gathered}
f(0)=\arcsin 0=0 \\
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left[\sqrt{e}-(1-x)^{\frac{1}{x^{2}-2 x}}\right]=\lim _{x \rightarrow 0^{-}}\left[\sqrt{e}-\left[(1+(-x))^{-\frac{1}{x}}\right]^{\frac{-1}{x-2}}\right]=\sqrt{e}-e^{\frac{1}{2}}=0, \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} \arcsin x=\arcsin 0=0
\end{gathered}
$$

function f is continuous at 0 .
Since

$$
f(1)=\arcsin 1=\frac{\pi}{2}
$$

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \arcsin x=\frac{\pi}{2} \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \ln (x-1)=\left[\begin{array}{l}
u=x-1 \\
x \rightarrow 1^{+} \Rightarrow u \rightarrow 0^{+}
\end{array}\right]=\lim _{u \rightarrow 0^{+}} \ln (u)=-\infty
\end{gathered}
$$

f has infinite jump at 1 (the discontinuity of II type).
The graph of this function is presented in Fig. 6.

Example 4. Determine types of discontinuities of function

$$
f(x)=\left\{\begin{array}{lll}
\frac{\sin x}{x} & \text { if } & x \in[-8,0) \\
\sqrt{3} & \text { if } & x=0 \\
-2 & \text { if } & x=\sqrt{2} .
\end{array}\right.
$$

We see that $D_{f}=[-8,0] \cup\{\sqrt{2}\}$. Function f is continuous on interval $[-8,0)$ and it is continuous at $\sqrt{2}$ (it is the isolated point of D_{f}).

Remember!

Each function is continuous at isolated points of its domain - it follows directly from the definition of continuity.

Function f may be discontinuous at 0 , we have to check it. We obtain

$$
\begin{gathered}
f(0)=\sqrt{3} \\
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sin x}{x}=1
\end{gathered}
$$

so f has removable discontinuity at 0 (we can redefine the function by the change of its value at 0 to obtain new function which is continuous at 0).

The graph of this function is presented in Fig. 7.

Fig. 7. The graph of function from Example 4

Example 5. Determine types of discontinuities of function

$$
f(x)=\left\{\begin{array}{lll}
\left(5-x^{2}\right)^{\frac{x}{2-x}} & \text { if } & x \in[0,2) \\
\frac{\sqrt{x^{2}+1}-1}{e^{x^{3}}-1} & \text { if } & x \in(-\infty, 0) \cup[2,+\infty) .
\end{array}\right.
$$

We see that $D_{f}=\mathbb{R}$ and f is continuous on intervals $(-\infty, 0),(0,2),(2,+\infty)$. The function may be discontinuous at points 0 or 2 .

We have

$$
\begin{gathered}
f(0)=5^{0}=1 \\
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}\left(5-x^{2}\right)^{\frac{x}{2-x}}=5^{0}=1
\end{gathered}
$$

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} \frac{\sqrt{x^{2}+1}-1}{e^{x^{3}}-1}=\lim _{x \rightarrow 0^{-}} \frac{\sqrt{x^{2}+1}-1}{e^{x^{3}}-1} \cdot \frac{\sqrt{x^{2}+1}+1}{\sqrt{x^{2}+1}+1}=\lim _{x \rightarrow 0^{-}} \frac{x^{2}}{\left(e^{x^{3}}-1\right)\left(\sqrt{x^{2}+1}+1\right)}=
$$

$$
=\lim _{x \rightarrow 0^{-}} \frac{x^{3}}{e^{x^{3}}-1} \cdot \frac{1}{x} \cdot \frac{1}{\sqrt{x^{2}+1}+1}=-\infty .
$$

The last result was obtained because $\lim _{x \rightarrow 0^{-}} \frac{x^{3}}{e^{x^{3}}-1}=\frac{1}{\ln e}=1$ (we apply the formula $\lim _{t \rightarrow 0} \frac{a^{t}-1}{t}=\ln a$ for $a>0$), $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty, \lim _{x \rightarrow 0^{-}} \frac{1}{\sqrt{x^{2}+1}+1}=\frac{1}{2}$.
Thus, f is discontinuous at 0 and there is II type discontinuity (infinite jump).
To verify the continuity of f at 2 we calculate:

$$
\begin{gathered}
f(2)=\frac{\sqrt{5}-1}{e^{8}-1} \\
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}} \frac{\sqrt{x^{2}+1}-1}{e^{x^{3}}-1}=\frac{\sqrt{5}-1}{e^{8}-1} \\
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}\left(5-x^{2}\right)^{\frac{x}{2-x}}=\lim _{x \rightarrow 2^{-}}\left(1+\left(4-x^{2}\right)\right)^{\frac{x}{2-x}}=\lim _{x \rightarrow 2^{-}}\left[\left(1+\left(4-x^{2}\right)\right)^{\frac{1}{4-x^{2}}}\right]^{\frac{x\left(4-x^{2}\right)}{2-x}}= \\
=\lim _{x \rightarrow 2^{-}}\left[\left(1+\left(4-x^{2}\right)\right)^{\frac{1}{4-x^{2}}}\right]^{x(x+2)}=e^{8}
\end{gathered}
$$

Both one-sided limits of f at 2 are finite and different so f is discontinuous at 2 and there is I type discontinuity (finite jump).

Example 6. Determine types of discontinuities of function

$$
f(x)=\left\{\begin{array}{lll}
\arccos \frac{1}{x} & \text { if } & x \neq 0 \\
2 \operatorname{arccot} x & \text { if } & x=0
\end{array}\right.
$$

First, we have to find the domain of f. Of course, we can calculate value of f at 0 :

$$
f(0)=2 \operatorname{arccot} 0=2 \cdot \frac{\pi}{2}=\pi
$$

Function arccos is defined for arguments from $[-1,1]$ so we have (assuming $x \neq 0$):

$$
\begin{gathered}
-1 \leq \frac{1}{x} \leq 1 \\
-1 \leq \frac{1}{x} \wedge \frac{1}{x} \leq 1
\end{gathered}
$$

$$
\begin{aligned}
& 0 \leq \frac{1}{x}+1 \\
& \wedge \frac{1}{x}-1 \leq 0 \\
& 0 \leq \frac{1+x}{x} \\
& \wedge \in \frac{1-x}{x} \leq 0 \\
& x \in(-\infty,-1] \cup(0,+\infty) \\
& \wedge x \in(-\infty, 0) \cup[1,+\infty) \\
& x \in(-\infty,-1] \cup[1,+\infty) .
\end{aligned}
$$

By the way, it is worth to say that the double inequality $-1 \leq \frac{1}{x} \leq 1$ may be easily solved using graphs. We draw hyperbola $y=\frac{1}{x}$ and lines $y=-1, y=1$. Then we look for points of hyperbola which are between these lines and read abscissae of these points.

Finally, the domain is $D_{f}=(-\infty,-1] \cup\{0\} \cup[1,+\infty)$. The function is continuous on intervals $(-\infty,-1],[1,+\infty)$ as the composition of two continuous functions. It is also continuous at 0 , which is the isolated point of D_{f}. Therefore, f is continuous and its domain is the closed set so function f does not posses discontinuities.

The graph of this function is presented in Fig. 8.

Fig. 8. The graph of function from Example 6

Example 7. Determine types of discontinuities of function

$$
f(x)=\left\{\begin{array}{lll}
\arccos \frac{1}{x} & \text { if } & x \notin\{-1,1\} \\
2+\arccos x & \text { if } & x=1
\end{array}\right.
$$

We start with the domain of function f. After calculations similar to these in the previous example, we get $D_{f}=(-\infty,-1) \cup[1,+\infty)$.

Note that -1 is the cluster point of D_{f} which does not belong to D_{f} so f has the discontinuity at -1 . We have

$$
\lim _{x \rightarrow-1} f(x)=\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} \arccos \frac{1}{x}=\arccos (-1)=\pi
$$

Thus, f has the removable discontinuity (I type) at -1 .
The function may have (but need not) a discontinuity at 1 . We have

$$
\begin{gathered}
f(1)=2+\arccos 1=2+0=2 \\
\lim _{x \rightarrow 1} f(x)=\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \arccos \frac{1}{x}=\arccos 1=0
\end{gathered}
$$

Hence, f has the removable discontinuity (I type) at 1. The graph of this function is presented in Fig. 9.

Fig. 9. The graph of function from Example 7

3. An exercise to be solved by oneself

Find discontinuities of functions listed below:
a) $f(x)=\frac{\sin 2 x}{\sin 4 x}$
b) $f(x)=\left\{\begin{array}{lll}\arctan \frac{x}{x-2} & \text { if } & x<2 \\ \frac{\sqrt{x^{2}+9}-5}{x-4} & \text { if } & x \geq 2\end{array}\right.$
c) $f(x)=\left\{\begin{array}{lll}\ln \left(9-x^{2}\right) & \text { if } & x \neq 5 \\ \ln 3 & \text { if } & x=5\end{array}\right.$
d) $f(x)=\left\{\begin{array}{lll}\frac{e^{x}-1}{x^{2}-2 x} & \text { if } & x<1 \\ \ln x-e^{x}+1 & \text { if } & x \geq 1\end{array}\right.$
e) $f(x)=\left\{\begin{array}{lll}\arccos \frac{1}{x} & \text { if } & x \leq-2 \\ 2 \operatorname{arccot}(x+2) & \text { if } & x>2\end{array}\right.$
f) $f(x)=\sqrt{x^{2}-4}+\sqrt{4-x^{2}}$

Answers:

a) function f has removable discontinuities at points $k \pi$ and $k \pi+\frac{\pi}{2}(l \in \mathbb{Z})$;
function f has infinite jumps at points $k \pi+\frac{\pi}{4}$ and $k \pi+\frac{3 \pi}{2}(l \in \mathbb{Z})$;
b) function f has finite jump at 2 and removable discontinuity at 4 ;
c) function f has infinite jumps at 3 and -3 ;
d) function f has removable discontinuity at 0 ;
e) function f does not have any discontinuities;
f) function f does not have any discontinuities (note that its domain is $D=\{-2,2\}$).

References

1. E. Łobos, B. Sikora, Calculus and differential equations in exercises, Gliwice 2012, p. 27.
2. B. Sikora, E. Łobos, A first course in calculus, Gliwice 2007, pp. 141-143.

[^0]: Autor korespondencyjny: E. Łobos (Ewa.Lobos@polsl.pl).
 Data wpłynięcia: 10.07 .2019 r.

