MINUT 2025 (7), s. 192-205

MATEMATYKA ISSN 2719-3063
| INFORMATYKA

e

Bartosz KUCHAREWICZ!', Marta KUCHARCZYK?, Bona WIECZOREK?

1Student, Wydzial Automatyki, Elektroniki i Informatyki, Politechnika Slaska, ul. Akademicka 16,
44-100 Gliwice

2 Studentka, Wydzial Automatyki, Elektroniki i Informatyki, Politechnika Slaska, ul. Akademicka 16,
44-100 Gliwice

3Katedra Algorytmiki i Oprogramowania, Politechnika Slaska, ul. Akademicka 16, 44-100 Gliwice

Zastosowanie struktury zbioréw rozlacznych w algorytmie
Kruskala

Streszczenie. We wspotczesnym swiecie wiele probleméw zwiazanych z optymalizacja potaczen
w sieciach komputerowych, energetycznych czy drogowych znajduje matematyczne rozwiazanie w
teorii grafow. Jednym z najistotniejszych zagadnien w tej dziedzinie jest wyznaczanie minimalnego
drzewa rozpinajacego (ang. Minimum Spannig Tree). W niniejszym artykule zaprezentowane zosta-
na dwa sposoby implementacji algorytmu Kruskala, r6zniace sie podej$ciem do wykrywania cykli
- metoda wykorzystujaca strukture zbioréw roztacznych (ang. Disjoint Set Union lub Union—Find
data structure) oraz rozwiazanie wykorzystujace wlasnosé spojnych sktadowych.

Stowa kluczowe: algorytm Kruskala, struktura zbioréw roztacznych, spéjne sktadowe, minimalne
drzewo rozpinajace, cykl, teoria grafow, algorytmy grafowe.

1. Wstep

Wyznaczanie minimalnego drzewa rozpinajacego (ang. Minimum Spanning Tree, MST) stanowi jedno
z kluczowych zagadnien w optymalizacji sieci. Problemy tego typu pojawiaja sie m.in. przy projektowaniu
sieci komputerowych, energetycznych czy telekomunikacyjnych, gdzie struktura sieci modelowana jest za
pomoca nieskierowanego grafu wazonego. W takim modelu wierzcholtki reprezentuja wezly sieci, natomiast
krawedzie odpowiadaja polaczeniom pomiedzy nimi, ktorym przypisane sa wagi odzwierciedlajace koszt
realizacji danego polaczenia, na przyklad dtugo$é¢ przewodu, koszt instalacji lub straty energii.

Problem wyznaczania minimalnego drzewa rozpinajacego polega na znalezieniu podgrafu obejmuja-
cego wszystkie wierzchotki grafu wejsciowego, ktory jest spojny i acykliczny, jednoczesnie charakteryzuje
sie minimalna mozliwa suma wag krawedzi. Na wejsciu algorytmu dany jest zatem spéjny, nieskierowany
graf wazony, natomiast na wyjsciu otrzymujemy minimalne drzewo rozpinajace tego grafu.

Autor korespondencyjny: B. Wieczorek (Bozena.Wieczorek@polsl.pl).
Data wptyniecia: 10.12.2025.

Zastosowanie struktury zbioréw roztacznych w algorytmie Kruskala 193

Powszechnie stosowanym algorytmem do wyznaczania MST jest algorytm Kruskala. Jego dziatanie
opiera sie na zachlannym doborze krawedzi o najmniejszej wadze oraz stopniowym ich dolaczaniu do
budowanego drzewa, przy jednoczesnym unikaniu powstawania cykli [2].

W artykule zaprezentowane zostang dwa sposoby implementacji algorytmu Kruskala, réznigce sie
metoda wykrywania cykli: klasyczne podejscie bazujace na analizie spojnych sktadowych oraz metoda
wykorzystujaca strukture zbioréow roztacznych.

W artykule stosowane beda nastepujace oznaczenia i pojecia:

- n — liczba wierzchotkéw, m — liczba krawedzi,

- graf nieskierowany — rodzaj grafu, ktérego krawedzie taczace dwa wierzchotki nie maja okreslo-
nego kierunku,

- graf spojny — graf, w ktérym miedzy dowolna para wierzchotkéw istnieje $ciezka,

- graf wazony — graf, w ktorym kazdej krawedzi przypisano okreslona wartos$é, zwanag waga lub

kosztem,

- cykl — §ciezka w grafie, ktéra zaczyna sie oraz koriczy w tym samym wierzchotku i zawiera przy-
najmniej jedna krawedz,

- minimalne drzewo rozpinajace — drzewo obejmujace wszystkie wierzchotki grafu oraz wybrane
krawedzie, tak aby graf pozostal spojny oraz acykliczny, a suma wag wybranych krawedzi byla
najmniejsza sposrod wszystkich mozliwych drzew rozpinajacych tego grafu,

- algorytm zachlanny — algorytm dokonujacy w kazdym kroku lokalnie najlepszego wyboru, w celu
uzyskania rozwiazania jak najbardziej zblizonego do optymalnego.

2. Metoda sp6jnych sktadowych

2.1. Przedstawienie metody

Metoda spojnych skladowych opiera sie na identyfikacji i laczeniu wierzchotkow grafu w grupy, w
ktorych kazdy wierzcholek jest osiagalny z kazdego innego. W algorytmie Kruskala metoda ta stuzy
do wykrywania cykli podczas budowania drzewa rozpinajacego. Jej celem jest polaczenie wszystkich
wierzchotkéw w jedng spojng sktadows, tworzac minimalne drzewo rozpinajace. Dla spdjnego grafu nie-
skierowanego zawierajacego n wierzchotkéw, liczba krawedzi w drzewie rozpinajacym wynosi n — 1.

2.2. Szczegbdlowy opis metody

Kluczowa koncepcja metody jest reprezentowanie grafu za pomoca numeréw spojnych sktadowych.
Wskazuja one, do ktoérej grupy nalezy dany wierzcholek. Dzieki zastosowaniu tej metody mozliwe jest
szybkie sprawdzenie, czy dwa wierzchotki naleza do tej samej sktadowej. Jest to bardzo istotne podczas
budowy minimalnego drzewa rozpinajacego. Waznym zalozeniem tej metody jest rowniez fakt, ze kaz-
dy z wierzchotkéw tworzy wlasna spdjna skladowsa, a jej numer jednoznacznie identyfikuje przypisana
wierzchotkowi grupe. Podczas dzialania algorytmu przetwarzane sa kolejne krawedzie grafu, posortowa-
ne niemalejaco wedtug kosztu (wagi krawedzi). Dla kazdej krawedzi {x,y} nastepuje sprawdzenie, czy

194 M. Kucharczyk, B. Wieczorek

wierzchotki x oraz y naleza do réznych sktadowych - w takim przypadku nastepuje ich scalenie. Operacja
ta sprawia, ze wszystkie wierzchotki nalezace do tej samej sktadowej co wierzcholek y otrzymuja numer
sktadowej, do ktérej nalezy wierzcholek x.

Dodanie krawedzi nastepuje tylko wtedy, gdy wierzchotki znajduja sie w réznych sktadowych, co za-
pewnia, ze w drzewie nie powstanie cykl. Proces powtarzany jest dla kolejnych krawedzi, az wszystkie
wierzchotki zostang polaczone w jedna spdjna sktadowsa, co koiiczy budowe minimalnego drzewa rozpi-
najacego.

2.3. Przedstawienie dzialania metody

Dany jest graf o liczbie wierzchotkoéw n = 10 oraz liczbie krawedzi m = 15 (rysunek 1).

Rysunek 1. Przykladowy graf

Pierwszym krokiem dziatania algorytmu jest przypisanie kazdemu wierzchotkowi numeru jego skta-
dowej. Na poczatku kazdemu wierzchotkowi przypisuje sie jego wlasny numer (tabela 1).

2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10

Tabela 1. Tablica poczatkowych sktadowych wierzchotkéw

wierzchotek ‘
sktadowa ‘

1
1

Nastepnie nalezy posortowaé¢ krawedzie w porzadku niemalejacym wedlug wag. Posortowane wagi
krawedzi znajduja sie w tabeli 2. Ostatnim etapem jest wyznaczenie minimalnego drzewa rozpinajacego.
Graf posiada dziesie¢ wierzchotkow, a wiec drzewo rozpinajace powinno zawieraé¢ dziewie¢ krawedzi. Koszt
MST jest suma wag jego krawedzi.

Kolejne kroki wyznaczania drzewa przedstawione sa ponizej.

e Przetwarzanie krawedzi 1 — 2 o wadze 1:

Sktadowe wierzchotkéow 1 oraz 2 sg rézne - mozna dodaé¢ krawedz do MST. Po tej operacji zmienia

sie rowniez sktadowa wierzchotka numer 2 — wynosi ona teraz 1.

Zastosowanie struktury zbioréw roztacznych w algorytmie Kruskala 195

Krawedz | Waga
{1, 2} 1
{5, 6}
{5, 7}
{3, 4}
{4, 5}
{6, 7}
{8, 10}
{3, 10}
{5, 8}
{6, 8}
{9, 10}
{1, 9}
{2, 3}
{4, 10}
{5, 10}

Tabela 2. Tablica krawedzi oraz wag

R R W W W WD N

S

wierzcholek‘l 23 4 5 6 7 8 9 10
skmdowa\11345678910

Koszt MST: 1

e Przetwarzanie krawedzi 5 — 6 o wadze 1:

Sktadowe wierzchotkow 5 oraz 6 sg rézne - mozna doda¢ krawedz do MST. Po tej operacji zmienia
sie réwniez sktadowa wierzchotka numer 6 — wynosi ona teraz 5.

wierzchotek [1 2 3 4 5 6 7 8 9 10
sktadowa |1 1 3 4 5 5 7 8 9 10

Koszt MST: 2

e Przetwarzanie krawedzi 5 — 7 o wadze 1:

Sktadowe wierzchotkow 5 oraz 7 sg rézne - mozna doda¢ krawedz do MST. Po tej operacji zmienia
sie rowniez sktadowa wierzchotka numer 7 — wynosi ona teraz 5.

wierzchotek [1 2 3 4 5 6 7 8 9 10
sktadowa |1 1 3 4 5 5 5 8 9 10

Koszt MST: 3

e Przetwarzanie krawedzi 3 — 4 o wadze 2:

Sktadowe wierzchotkow 3 oraz 4 sg rézne - mozna doda¢ krawedz do MST. Po tej operacji zmienia
sie rowniez sktadowa wierzchotka numer 4 — wynosi ona teraz 3.

wierzchotek [1 2 3 4 5 6 7 8 9 10
sktadowa |1 1 3 3 5 5 5 8 9 10

Koszt MST: 5

196 M. Kucharczyk, B. Wieczorek

e Przetwarzanie krawedzi 4 — 5 o wadze 2:
Sktadowe wierzchotkéw 4 oraz 5 s rozne - mozna dodaé krawedz do MST. Po tej operacji zmieniaja,

sie rowniez sktadowe wierzchotkéw numer 5, 6, 7 — wynosza one teraz 3.

wierzchotek [1 2 3 4 5 6 7 8 9 10
sktadowa |1 1 3 3 3 3 3 8 9 10

Koszt MST: 7

e Przetwarzanie krawedzi 6 — 7 o wadze 2:

Sktadowe wierzchotkéw 6 oraz 7 sa takie same - krawedz ta nie jest dodana do MST. Nie zmieniaja
sie wartosci sktadowych wierzchotkow oraz suma MST. Stan grafu po tej operacji przedstawiony

OIS
o o~

zostal na rysunku 2.

Rysunek 2. Czesciowe drzewo rozpinajace

e Kontynuujemy proces analogicznie az do dotaczenia n — 1 krawedzi.

e Po zakonczeniu dzialania algorytmu minimalne drzewo rozpinajace zawiera krawedzie: {1, 2}, {5,
6}, {5, 7}, {3, 4}, {4, 5}, {8, 10}, {3, 10}, {9, 10}, {1, 9} a koszt catkowity wynosi 19. Koncowy
graf zostal przedstawiony na rysunku 3.

wierzchoiek‘l 2 345 6 7 8 9 10
skmdowa\111111111 1

1

2

3

5

Zastosowanie struktury zbioréw rozlacznych w algorytmie Kruskala

197

Rysunek 3. Minimalne drzewo rozpinajace

2.4. Przykladowa implementacja

Przykladows implementacje algorytmu Kruskala z metoda spéjnych sktadowych przedstawiono na

listingu 1.

#include <iostream>
#include <vector>
#include <algorithm>

struct krawedz {
int x, y;
long long waga;
>
void kruskal(int n, std::vector<std::pair<int, int>>& drzewo,
krawedzie)

std::vector<int> skladowa(n + 1); // Numer sk adowych
long long suma = 0;

int stara_skladowa{}, nowa_skladowa{};

for (int i = 1; i <= n; i++)

skladowa[i] = i;

sort (krawedzie.begin(), krawedzie.end(),[](auto& a, auto& b)
{
return a.waga < b.waga;

) g

for (auto& k : krawedzie)
{
//Sprawdzanie czy istnieje cykl pomi dzy wierzcho kami
if (skladowalk.x] == skladowalk.yl])
continue;
//Dodanie kraw dzi do MST
drzewo .push_back ({ k.x, k.y });

std:

:vector<krawedz >&

198

M. Kucharczyk, B. Wieczorek

suma += k.waga;
stara_skladowa = skladowalk.yl];
nowa_skladowa = skladowalk.x];
//Przypisywanie nowych sk adowych
for (int i = 1; i <= n; i++)
{
if (skladowal[i]l == stara_skladowa)
skladowal[i] = nowa_skladowa;
T
if (drzewo.size() == n - 1) break;
}

std::cout << "Koszt MST: " << suma << std::endl;

2 }

3 int main() {

int n, m, wi, w2;

long long koszt;

//Lista kraw dzi nale cych do MST
std::vector<std::pair<int, int>> drzewo;
//Lista wszystkich kraw dzi

std::vector<krawedz> krawedzie;

std::cout << "Podaj liczbe wierzcholkow: " << std::endl;
std::cin >> n;
std::cout << "Podaj liczbe krawedzi: " << std::endl;
std::cin >> m;
for (int i = 1; i <= m; i++) {
std::cout << "Podaj krawedz - dwa wierzcholki oraz koszt (wage):

std::cin >> w1l >> w2 >> koszt;
krawedzie.push_back ({ wil, w2, koszt });
}

kruskal (n, drzewo, krawedzie);

Listing 1. Metoda spo6jnych sktadowych

2.5. Ztozono$é¢ obliczeniowa metody

<< std::endl;

Algorytm Kruskala, w ktorym zastosowano metode spéjnych sktadowych, charakteryzuje sie ztozono-
Scia czasowa rowna O(nm), gdzie n oznacza liczbe wierzchotkow w grafie, a m — liczbe krawedzi taczacych
te wierzchotki. W fazie przygotowania, ktéra obejmuje inicjalizacje tablicy sktadowych ztozonosé oblicze-
niowa wynosi O(n + m). Kolejna faza dziatania algorytmu jest sortowanie krawedzi niemalejaco wedltug
ich wag. Ten etap posiada ztozonosé obliczeniowa O(mlogm). Ostatnim etapem jest budowanie minimal-
nego drzewa rozpinajacego (MST). Podczas jego trwania kazda krawedz jest analizowana, a w przypadku
potaczenia dwoch roznych sktadowych konieczne jest przejécie po wszystkich wierzchotkach grafu w celu
aktualizacji numeréw sktadowych, co prowadzi do zlozonosci O(n) dla kazdej krawedzi. W rezultacie,
calkowita ztozonosé etapu scalania sktadowych wynosi O(nm).

3. Metoda z uzyciem struktury zbioréw roztacznych

3.1. Szczegbdlowy opis metody

Struktura zbioréw roztacznych stuzy do zarzadzania zbiorami. Gléwna idea jest szybkie wykrywanie
cykli bez przeszukiwania grafu. Struktura zbioréw roztacznych przechowuje informacje o tym, do jakiego

Zastosowanie struktury zbioréw roztacznych w algorytmie Kruskala 199

komponentu nalezy kazdy wierzcholek [1]. Na poczatku kazdy wezel stanowi odrebny zbior. Z kazdym
etapem dodawania krawedzi zbiory te sa laczone, a operacje przeprowadzane na strukturze pozwalaja
zweryfikowaé, czy dwa wierzchotki znajduja sie juz w tym samym zbiorze. Jezeli tak, oznacza to, ze do-
danie krawedzi spowodowaloby powstanie cyklu, wiec nalezy ja pominaé. Dziecki temu algorytm Kruskala
tworzy minimalne drzewo rozpinajace bez koniecznosci dodatkowego przeszukiwania grafu. Struktura
zbiorow rozlacznych sklada sie z dwoch podstawowych operacji: znajdowania (ang. find) oraz polaczenia
(ang. union). Pierwsza z nich odpowiada za znalezienie zbioru, do ktérego nalezy dany element, spraw-
dzajac czy dwa elementy sa w tym samym zbiorze, a druga polega na taczeniu, ktére scala dwa zbiory
w jeden. W celu identyfikacji i odrozniania od siebie zbioréw uzywa sie jednego wyrdznionego elementu
zbioru, zwanego reprezentantem.

Idea dziatania algorytmu:

1. Inicjalizacja struktury zbioréw roztacznych. Na poczatku kazdy wierzcholek tworzy odrebny,
jednoelementowy zbior.

2. Sortowanie krawedzi. Wszystkie krawedzie grafu sortowane sg niemalejace wedtug wag (kosztow).
3. Przetwarzanie ciagu posortowanych krawedzi:

e dla wierzchotka x wykonywana jest operacja znajdowania, aby ustali¢ jego reprezentanta,
e dla wierzchotka y wykonywana jest operacja znajdowania, aby ustali¢ jego reprezentanta,

e jezeli reprezentanci zbiorow sa rozni, krawedz {x, y} zostaje dodana do wynikowego drzewa
rozpinajacego, a oba zbiory sg scalane operacja potaczenia. W przeciwnym przypadku krawedz
jest pomijana, poniewaz jej dodanie spowodowaloby powstanie cyklu.

4. Kontynuacja procesu. Proces trwa az w drzewie rozpinajacym znajdzie si¢ n — 1 krawedzi.

3.2. Metody znajdowania oraz laczenia

Metoda znajdz(z) stuzy do wyznaczenia reprezentanta zbioru, do ktérego nalezy element x. Kazdy
zbiér przedstawiany jest w postaci drzewa, w ktérym korzen pelni role identyfikatora calej sktadowej.
Dziatanie funkcji polega na rekurencyjnym przemierzaniu od wierzchotka x w gore drzewa az do osiagnie-
cia jego korzenia. W celu minimalizacji ztozonosci kolejnych wywolari stosuje sie technike kompres;ji $ciezki
(ang. path compression), polegajaca na tym, ze wszystkie wierzchotki napotkane w trakcie poszukiwania
zostaja bezposrednio potaczone z korzeniem.

Metoda potgcz(z, y) pozwala na polaczenie dwoch roztacznych zbiorow, w ktorych znajduja sie ele-
menty x oraz y. W pierwszym kroku wyznaczani sa reprezentanci obu zbioréw: x = znajdz(x) oraz y =
znajdé(y). W przypadku gdy z jest rozny od y, zbiory te sa taczone poprzez przypisanie jednego z repre-
zentantow jako rodzica drugiego. W celu ograniczenia wzrostu wysokosci drzew reprezentujacych zbiory
uzywa sie techniki laczenia wedlug rozmiaru (ang. union by size) lub laczenia wedlug rangi (ang. union
by rank). Zaréwno w jednym, jak i drugim przypadku drzewo o mniejszej liczbie wierzchotkow dotaczane
jest do wiekszego z drzew.

3.3. Przedstawienie dziatania algorytmu

Rozwazmy graf nieskierowany, wazony o liczbie wierzchotkéw n = 10 oraz liczbie krawedzi m = 15
(rysunek 4).

200 M. Kucharczyk, B. Wieczorek

Rysunek 4. Przykladowy graf

e Na poczatku kazdy wierzchotek tworzy osobny, jednoelementowy zbior, tzn. jest swoim rodzicem
i reprezentantem.

rodziclz] = x, rozmiar[z] = 1, gdzie x oznacza wierzcholek w grafie.

r |12345678910
rodziclz] |1 2 3 4 5 6 7 8 9 10
rozmiarfz] {1 1 1 1 1 1 1 1 1 1

e Sortujemy krawedzie niemalejaco wedlug wag (tabela 3).

Krawedz | Waga
{1,2} 1
{5,6}
{5, 7}
{3,4}
{4,5}
{6,7}
{8,10}
{3,10}
{5,8}
{6,8}
{9,10}
{1,9}
{2,3}
{4,10}
{5,10}

R R R W W W W NN N

Tabela 3. Tablica krawedzi oraz wag

Zastosowanie struktury zbioréw roztacznych w algorytmie Kruskala 201

Rozwazamy po kolei krawedzie, wykonujac dla kazdej procedury: znajdz(z), znajdé(y) oraz opcjo-
nalnie potgcz(z, y).

e Rozpoczynamy pierwszg iteracje. Rozwazmy krawedz {1, 2} o wadze 1. znajdé(1) = 1, znajdz(2)
= 2 — rézni reprezentanci. Dodajemy krawedz do MST i wykonujemy potgcz(1, 2). Po operacji
uzyskujemy rodzic[2] = 1, rozmiar[l] = 2. Drzewo zawiera krawedz {1, 2}, a koszt czeSciowy wynosi

1.
|1 23456780910
rodziclz] |1 1 3 4 5 6 7 8 9 10
rozmiarjz] |2 1 1 1 1 1 1 1 1 1

e Kontynuujemy. Rozwazamy krawedz {5, 6} o wadze 1. znajd2(5) = 5, znajd2(6) = 6 — rozni
reprezentanci. Dodajemy krawedz do MST i wykonujemy potgcz(5, 6). Po operacji uzyskujemy
rodzic[6] = 5, rozmiar[5] = 2. MST zawiera krawedzie {1, 2}, {5, 6}, a koszt cze¢Sciowy wynosi 2.

r |123 45678910
rodziclr] |1 1 3 4 5 5 7 8 9 10
rozmiarfz] |2 1 1 1 2 1 1 1 1 1

e Rozwazamy krawedz {5, 7} o wadze 1. znajdZ(5) = 5, znajd4(7) = 7 — rdzni reprezentanci.
Dodajemy krawedz do MST i wykonujemy potgcz(5, 7). Po operacji uzyskujemy rodzic[7] = 5,
rozmiar[b] = 3. Drzewo zawiera krawedzie {1, 2}, {5, 6}, {5, 7} a koszt czeciowy wynosi 3.

|1 23456780910
rodziclz] |1 1 3 4 5 5 5 8 9 10
rozmiarfz] {2 1 1 1 3 1 1 1 1 1

e Nastepnie rozwazamy krawedz {3, 4} o wadze 2. znajdz(3) = 3, znajdz(4) = 4 — rézni reprezentanci.
Dodajemy krawedz do MST i wykonujemy potgcz(3, 4). Po operacji uzyskujemy rodzic[4] = 3,
rozmiar(3] = 2. MST zawiera krawedzie {1, 2}, {5, 6}, {5, 7}, {3, 4} a koszt czeSciowy wynosi 5.

|1 23456780910

rodziclz] |1 1 3 3 5 5 5 8 9 10

rozmiarjz] {2 1 2 1 3 1 1 1 1 1
e Rozwazamy krawedz {4, o wadze 2. znajdi(4) = 3, znajdi(5) = 5 — rdézni reprezentanci.
Rozwazamy krawedz {4, 5} dze 2. znajdi(4) — 3, znajdé(5) = 5 — tozni rep i

Dodajemy krawedz do MST i wykonujemy potgcz(4, 5). Po operacji uzyskujemy rodzic[3] = 5,
rozmiar[3] = 2, rozmiar(5] = 5. MST zawiera krawedzie {1, 2}, {5, 6}, {5, 7}, {3, 4}, {4, 5} a
koszt czesciowy wynosi 7. Krawedzie dodane do drzewa przedstawiono na rysunku 5.

|1 23456780910
rodziclr] |1 1 5 3 5 5 5 8 9 10
rozmiarfz] {2 1 2 1 5 1 1 1 1 1

e Krawedz {6, 7} o wadze 2. znajdz(6) = 5, znajdz(7) = 5 — ten sam reprezentant. Krawedz tworzy
cykl, wiec pomijamy. MST pozostaje bez zmian.

202 M. Kucharczyk, B. Wieczorek

oY g
o S

Rysunek 5. Czesciowe drzewo rozpinajace

e Kontynuujemy analogicznie az do drzewa dolaczonych zostanie n — 1 krawedzi.

Minimalne drzewo rozpinajace zawiera nastepujace krawedzie: {1, 2}, {5, 6}, {5, 7}, {3, 4}, {4, 5}, {8,
10}, {3, 10}, {9, 10}, {1, 9} a koszt calkowity wynosi 19 (rysunek 6).

v |1 234 5 678910
rodziclr] |5 1 5 3 5 5 5 5 5 5
rozmiarjz] |2 1 2 1 10 1 1 2 1 1

Rysunek 6. Minimalne drzewo rozpinajace

Zastosowanie struktury zbioréw roztacznych w algorytmie Kruskala 203

3.4. Przykladowa implementacja

Przyktadowa implementacje algorytmu Kruskala z wykorzystaniem struktury zbioréw roztacznych
przedstawiono w listingu 2. Rozwiazanie zostalo podzielone na trzy gltowne funkcje: znajdz, polacz, kru-
skal. Gtowna funkcja kruskal realizuje wlasciwy algorytm znajdowania minimalnego drzewa rozpinajace-

go.

#include<iostream>
#include<vector>
#include<algorithm>

//Struktura reprezentuj ca kraw d w grafie
struct krawedz
{

int x, y;

long long koszt;
}s
//Funkcja znajduj ca reprezentanta zbioru
int znajdz (int x, std::vector<int>& rodzic)
{

if (x != rodzicl[x])

rodzic[x] = znajdz(rodzic[x], rodzic);

return rodzicl[x];

}

//Funkcja czca dwa zbiory

void polacz(int x, int y, std::vector<int>& rodzic, std::vector<long long>& rozmiar)

{
x = znajdz(x, rodzic);
y = znajdz(y, rodzic);
if (x == y)
return;
//zawsze przy czamy mniejszy zbi r do wi kszego
if (rozmiar[x] < rozmiar[y])
std::swap(x, y);
rodzic[y]l = x;
rozmiar [x] += rozmiar[y];
}
// G wna funkcja algorytmu Kruskala

void kruskal(int n, int m, std::vector<std::pair<int, int>>& drzewo, std::vector<
krawedz >& krawedzie)

//Inicjalizacja struktur
std::vector<int> rodzic(n + 1);
//ka dy zbi r ma pocz tkowo rozmiar r wny 1
std::vector<long long> rozmiar(n + 1, 1);
for (int i = 1; i <= nj; i++)
{
rodzic[i] = i;
¥
//Sortowanie kraw dzi niemalej co wed ug wag
sort (krawedzie.begin(), krawedzie.end(), [](const krawedz& a, const krawedz& b)

{

return a.koszt < b.koszt;
1
long long suma = 0;

int i = 0;

204

M. Kucharczyk, B. Wieczorek

while (drzewo.size() < n - 1)

{
//je 1i kraw d czy r ne zbiory, to dodajemy j do MST
if (znajdz(krawedzie[i].x, rodzic) != znajdz(krawedziel[il].y, rodzic))
{

drzewo .push_back ({ krawedzie[i].x, krawedziel[il.y 1});
polacz (krawedzie[i].x, krawedzie[i].y, rodzic, rozmiar);
suma += krawedziel[i].koszt;

}
i++;
¥
std::cout << "Minimalne drzewo rozpinajace = " << suma;
}
int main ()
{
int n, m, wi, w2;
long long koszt;
//Lista kraw dzi nale cych do MST
std::vector<std::pair<int, int>> drzewo;
//Lista wszystkich kraw dzi
std::vector<krawedz> krawedzie;
std::cout << "Podaj liczbe wierzcholkow: " << std::endl;
std::cin >> n;
std::cout << "Podaj liczbe krawedzi: " << std::endl;
std::cin >> m;
for (int i = 1; i <= m; i++)
{
std::cout << "Podaj krawedz - dwa wiercholki oraz koszt (wage): "
std::cin >> wl >> w2 >> koszt;
krawedzie.push_back ({ wil, w2, koszt });
¥
kruskal(n, m, drzewo, krawedzie);
}

Listing 2. Metoda z zastosowaniem struktury zbioréw roztacznych

<< std::endl;

3.5. Zlozonosé obliczeniowa

Ztozonos¢ obliczeniowa algorytmu Kruskala z wykorzystaniem struktury zbioréw rozlacznych zalezy
od dwoch gléwnych etapow jego dzialania: sortowania krawedzi oraz procesu taczenia zbioréow w struk-
turze. W pierwszym etapie wszystkie krawedzie grafu sg sortowane niemalejaco wedtug wag, dla grafu o
m krawedziach sortowanie wymaga czasu O(mlogm). Drugi etap polega na iteracyjnym przetwarzaniu
krawedzi i sprawdzaniu, czy oba wierzchotki nalezg do réznych zbioréw. Operacje te sa realizowane za
pomoca funkcji znajdowania, polaczenia, ktore umozliwiajg szybkie scalanie wierzcholtkéw. Dzieki zasto-
sowaniu optymalizacji, takich jak kompresja $ciezek oraz taczenie wedlug rozmiaru lub rangi, kazda z
tych operacji jest wykonywana w czasie zblizonym do statego — O(a(n)), gdzie a(n) to bardzo wolno
rosngca odwrotnosé funkeji Ackermana, uznawana praktycznie za staly. Ztozonosé tego etapu jest wiec
O(ma(n)). Laczna ztozonosé obliczeniowa algorytmu Kruskala wynosi O(mlogm).

Zastosowanie struktury zbioréw roztacznych w algorytmie Kruskala 205

4. Podsumowanie

W niniejszym artykule przedstawiono dwa podejscia do realizacji algorytmu Kruskala: z wykorzysta-
niem struktury zbioréw roztacznych oraz metode oparta na spéjnych sktadowych. Omoéwiono zasady ich
dzialania, roznice implementacyjne oraz wptyw na ztozonos¢ obliczeniows. Analiza wykazata, ze zastoso-
wanie struktury zbiorow roztacznych zapewnia wyzsza wydajnosé, zwtaszcza w przypadku duzych grafow,
natomiast podejscie oparte na spdjnych sktadowych, choé bardziej intuicyjne, okazuje sie mniej efektywne.
Poza omoéwionymi w artykule metodami wyznaczania minimalnego drzewa rozpinajacego istnieja rowniez
inne algorytmy, takie jak Prima-Dijkstry oraz Boruvki.

Literatura

1. Robert Endre Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm., [w:] J. ACM
Association for Computing Machinery, April 1975, New York, USA, 215-225. https://doi.org/10.
1145/321879.321884

2. Haiming Li, Qiyang Xia, Yong Wang. Research and Improvement of Kruskal Algorithm, [w:] Jo-
urnal of Computer and Communications, January 2017, 63-69. https://www.researchgate.net/
publication/320714849_Research_and_Improvement_of_Kruskal_Algorithm

