
MINUT 2025 (7), s. 192–205
ISSN 2719-3063

Bartosz KUCHAREWICZ1, Marta KUCHARCZYK2, Bona WIECZOREK3

1Student, Wydział Automatyki, Elektroniki i Informatyki, Politechnika Śląska, ul.Akademicka 16,
44-100 Gliwice
2 Studentka, Wydział Automatyki, Elektroniki i Informatyki, Politechnika Śląska, ul.Akademicka 16,
44-100 Gliwice
3Katedra Algorytmiki i Oprogramowania, Politechnika Śląska, ul. Akademicka 16, 44-100 Gliwice

Zastosowanie struktury zbiorów rozłącznych w algorytmie
Kruskala

Streszczenie. We współczesnym świecie wiele problemów związanych z optymalizacją połączeń
w sieciach komputerowych, energetycznych czy drogowych znajduje matematyczne rozwiązanie w
teorii grafów. Jednym z najistotniejszych zagadnień w tej dziedzinie jest wyznaczanie minimalnego
drzewa rozpinającego (ang.Minimum Spannig Tree). W niniejszym artykule zaprezentowane zosta-
ną dwa sposoby implementacji algorytmu Kruskala, różniące się podejściem do wykrywania cykli
- metoda wykorzystująca strukturę zbiorów rozłącznych (ang. Disjoint Set Union lub Union–Find
data structure) oraz rozwiązanie wykorzystujące własność spójnych składowych.

Słowa kluczowe: algorytm Kruskala, struktura zbiorów rozłącznych, spójne składowe, minimalne
drzewo rozpinające, cykl, teoria grafów, algorytmy grafowe.

1. Wstęp

Wyznaczanie minimalnego drzewa rozpinającego (ang. Minimum Spanning Tree, MST) stanowi jedno
z kluczowych zagadnień w optymalizacji sieci. Problemy tego typu pojawiają się m.in. przy projektowaniu
sieci komputerowych, energetycznych czy telekomunikacyjnych, gdzie struktura sieci modelowana jest za
pomocą nieskierowanego grafu ważonego. W takim modelu wierzchołki reprezentują węzły sieci, natomiast
krawędzie odpowiadają połączeniom pomiędzy nimi, którym przypisane są wagi odzwierciedlające koszt
realizacji danego połączenia, na przykład długość przewodu, koszt instalacji lub straty energii.

Problem wyznaczania minimalnego drzewa rozpinającego polega na znalezieniu podgrafu obejmują-
cego wszystkie wierzchołki grafu wejściowego, który jest spójny i acykliczny, jednocześnie charakteryzuje
się minimalną możliwą sumą wag krawędzi. Na wejściu algorytmu dany jest zatem spójny, nieskierowany
graf ważony, natomiast na wyjściu otrzymujemy minimalne drzewo rozpinające tego grafu.

Autor korespondencyjny: B. Wieczorek (Bozena.Wieczorek@polsl.pl).
Data wpłynięcia: 10.12.2025.

Zastosowanie struktury zbiorów rozłącznych w algorytmie Kruskala 193

Powszechnie stosowanym algorytmem do wyznaczania MST jest algorytm Kruskala. Jego działanie
opiera się na zachłannym doborze krawędzi o najmniejszej wadze oraz stopniowym ich dołączaniu do
budowanego drzewa, przy jednoczesnym unikaniu powstawania cykli [2].

W artykule zaprezentowane zostaną dwa sposoby implementacji algorytmu Kruskala, różniące się
metodą wykrywania cykli: klasyczne podejście bazujące na analizie spójnych składowych oraz metoda
wykorzystująca strukturę zbiorów rozłącznych.

W artykule stosowane będą następujące oznaczenia i pojęcia:

· n – liczba wierzchołków, m – liczba krawędzi,

· graf nieskierowany – rodzaj grafu, którego krawędzie łączące dwa wierzchołki nie mają określo-
nego kierunku,

· graf spójny – graf, w którym między dowolną parą wierzchołków istnieje ścieżka,

· graf ważony – graf, w którym każdej krawędzi przypisano określoną wartość, zwaną wagą lub
kosztem,

· cykl – ścieżka w grafie, która zaczyna się oraz kończy w tym samym wierzchołku i zawiera przy-
najmniej jedną krawędź,

· minimalne drzewo rozpinające – drzewo obejmujące wszystkie wierzchołki grafu oraz wybrane
krawędzie, tak aby graf pozostał spójny oraz acykliczny, a suma wag wybranych krawędzi była
najmniejsza spośród wszystkich możliwych drzew rozpinających tego grafu,

· algorytm zachłanny – algorytm dokonujący w każdym kroku lokalnie najlepszego wyboru, w celu
uzyskania rozwiązania jak najbardziej zbliżonego do optymalnego.

2. Metoda spójnych składowych

2.1. Przedstawienie metody

Metoda spójnych składowych opiera się na identyfikacji i łączeniu wierzchołków grafu w grupy, w
których każdy wierzchołek jest osiągalny z każdego innego. W algorytmie Kruskala metoda ta służy
do wykrywania cykli podczas budowania drzewa rozpinającego. Jej celem jest połączenie wszystkich
wierzchołków w jedną spójną składową, tworząc minimalne drzewo rozpinające. Dla spójnego grafu nie-
skierowanego zawierającego n wierzchołków, liczba krawędzi w drzewie rozpinającym wynosi n− 1.

2.2. Szczegółowy opis metody

Kluczową koncepcją metody jest reprezentowanie grafu za pomocą numerów spójnych składowych.
Wskazują one, do której grupy należy dany wierzchołek. Dzięki zastosowaniu tej metody możliwe jest
szybkie sprawdzenie, czy dwa wierzchołki należą do tej samej składowej. Jest to bardzo istotne podczas
budowy minimalnego drzewa rozpinającego. Ważnym założeniem tej metody jest również fakt, że każ-
dy z wierzchołków tworzy własną spójną składową, a jej numer jednoznacznie identyfikuje przypisaną
wierzchołkowi grupę. Podczas działania algorytmu przetwarzane są kolejne krawędzie grafu, posortowa-
ne niemalejąco według kosztu (wagi krawędzi). Dla każdej krawędzi {x, y} następuje sprawdzenie, czy

194 M. Kucharczyk, B. Wieczorek

wierzchołki x oraz y należą do różnych składowych - w takim przypadku następuje ich scalenie. Operacja
ta sprawia, że wszystkie wierzchołki należące do tej samej składowej co wierzchołek y otrzymują numer
składowej, do której należy wierzchołek x.

Dodanie krawędzi następuje tylko wtedy, gdy wierzchołki znajdują się w różnych składowych, co za-
pewnia, że w drzewie nie powstanie cykl. Proces powtarzany jest dla kolejnych krawędzi, aż wszystkie
wierzchołki zostaną połączone w jedną spójną składową, co kończy budowę minimalnego drzewa rozpi-
nającego.

2.3. Przedstawienie działania metody

Dany jest graf o liczbie wierzchołków n = 10 oraz liczbie krawędzi m = 15 (rysunek 1).

Rysunek 1. Przykładowy graf

Pierwszym krokiem działania algorytmu jest przypisanie każdemu wierzchołkowi numeru jego skła-
dowej. Na początku każdemu wierzchołkowi przypisuje się jego własny numer (tabela 1).

wierzchołek 1 2 3 4 5 6 7 8 9 10
składowa 1 2 3 4 5 6 7 8 9 10

Tabela 1. Tablica początkowych składowych wierzchołków

Następnie należy posortować krawędzie w porządku niemalejącym według wag. Posortowane wagi
krawędzi znajdują się w tabeli 2. Ostatnim etapem jest wyznaczenie minimalnego drzewa rozpinającego.
Graf posiada dziesięć wierzchołków, a więc drzewo rozpinające powinno zawierać dziewięć krawędzi. Koszt
MST jest sumą wag jego krawędzi.

Kolejne kroki wyznaczania drzewa przedstawione są poniżej.

• Przetwarzanie krawędzi 1 – 2 o wadze 1:

Składowe wierzchołków 1 oraz 2 są różne - można dodać krawędź do MST. Po tej operacji zmienia
się również składowa wierzchołka numer 2 – wynosi ona teraz 1.

Zastosowanie struktury zbiorów rozłącznych w algorytmie Kruskala 195

Krawędź Waga
{1, 2} 1
{5, 6} 1
{5, 7} 1
{3, 4} 2
{4, 5} 2
{6, 7} 2
{8, 10} 2
{3, 10} 3
{5, 8} 3
{6, 8} 3
{9, 10} 3
{1, 9} 4
{2, 3} 4
{4, 10} 4
{5, 10} 4

Tabela 2. Tablica krawędzi oraz wag

wierzchołek 1 2 3 4 5 6 7 8 9 10

składowa 1 1 3 4 5 6 7 8 9 10

Koszt MST: 1

• Przetwarzanie krawędzi 5 – 6 o wadze 1:

Składowe wierzchołków 5 oraz 6 są różne - można dodać krawędź do MST. Po tej operacji zmienia
się również składowa wierzchołka numer 6 – wynosi ona teraz 5.

wierzchołek 1 2 3 4 5 6 7 8 9 10

składowa 1 1 3 4 5 5 7 8 9 10

Koszt MST: 2

• Przetwarzanie krawędzi 5 – 7 o wadze 1:

Składowe wierzchołków 5 oraz 7 są różne - można dodać krawędź do MST. Po tej operacji zmienia
się również składowa wierzchołka numer 7 – wynosi ona teraz 5.

wierzchołek 1 2 3 4 5 6 7 8 9 10

składowa 1 1 3 4 5 5 5 8 9 10

Koszt MST: 3

• Przetwarzanie krawędzi 3 – 4 o wadze 2:

Składowe wierzchołków 3 oraz 4 są różne - można dodać krawędź do MST. Po tej operacji zmienia
się również składowa wierzchołka numer 4 – wynosi ona teraz 3.

wierzchołek 1 2 3 4 5 6 7 8 9 10

składowa 1 1 3 3 5 5 5 8 9 10

Koszt MST: 5

196 M. Kucharczyk, B. Wieczorek

• Przetwarzanie krawędzi 4 – 5 o wadze 2:

Składowe wierzchołków 4 oraz 5 są różne - można dodać krawędź do MST. Po tej operacji zmieniają
się również składowe wierzchołków numer 5, 6, 7 – wynoszą one teraz 3.

wierzchołek 1 2 3 4 5 6 7 8 9 10

składowa 1 1 3 3 3 3 3 8 9 10

Koszt MST: 7

• Przetwarzanie krawędzi 6 – 7 o wadze 2:

Składowe wierzchołków 6 oraz 7 są takie same - krawędź ta nie jest dodana do MST. Nie zmieniają
się wartości składowych wierzchołków oraz suma MST. Stan grafu po tej operacji przedstawiony
został na rysunku 2.

Rysunek 2. Częściowe drzewo rozpinające

• Kontynuujemy proces analogicznie aż do dołączenia n− 1 krawędzi.

• Po zakończeniu działania algorytmu minimalne drzewo rozpinające zawiera krawędzie: {1, 2}, {5,
6}, {5, 7}, {3, 4}, {4, 5}, {8, 10}, {3, 10}, {9, 10}, {1, 9} a koszt całkowity wynosi 19. Końcowy
graf został przedstawiony na rysunku 3.

wierzchołek 1 2 3 4 5 6 7 8 9 10

składowa 1 1 1 1 1 1 1 1 1 1

Zastosowanie struktury zbiorów rozłącznych w algorytmie Kruskala 197

Rysunek 3. Minimalne drzewo rozpinające

2.4. Przykładowa implementacja

Przykładową implementację algorytmu Kruskala z metodą spójnych składowych przedstawiono na
listingu 1.

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 struct krawedz {
6 int x, y;
7 long long waga;
8 };
9 void kruskal(int n, std::vector <std::pair <int , int >>& drzewo , std::vector <krawedz >&

krawedzie)
10 {
11 std::vector <int > skladowa(n + 1); // Numer s k a d o w y c h
12 long long suma = 0;
13 int stara_skladowa {}, nowa_skladowa {};
14

15 for (int i = 1; i <= n; i++)
16 skladowa[i] = i;
17

18 sort(krawedzie.begin (), krawedzie.end() ,[](auto& a, auto& b)
19 {
20 return a.waga < b.waga;
21 });
22

23 for (auto& k : krawedzie)
24 {
25 // Sprawdzanie czy istnieje cykl p o m i d z y wie rzc ho kam i
26 if (skladowa[k.x] == skladowa[k.y])
27 continue;
28 // Dodanie k r a w d z i do MST
29 drzewo.push_back ({ k.x, k.y });

198 M. Kucharczyk, B. Wieczorek

30 suma += k.waga;
31 stara_skladowa = skladowa[k.y];
32 nowa_skladowa = skladowa[k.x];
33 // Przypisywanie nowych s k a d o w y c h
34 for (int i = 1; i <= n; i++)
35 {
36 if (skladowa[i] == stara_skladowa)
37 skladowa[i] = nowa_skladowa;
38 }
39 if (drzewo.size() == n - 1) break;
40 }
41 std::cout << "Koszt MST: " << suma << std::endl;
42 }
43 int main() {
44 int n, m, w1 , w2;
45 long long koszt;
46 //Lista k r a w d z i n a l e c y c h do MST
47 std::vector <std::pair <int , int >> drzewo;
48 //Lista wszystkich k r a w d z i
49 std::vector <krawedz > krawedzie;
50 std::cout << "Podaj liczbe wierzcholkow: " << std::endl;
51 std::cin >> n;
52 std::cout << "Podaj liczbe krawedzi: " << std::endl;
53 std::cin >> m;
54 for (int i = 1; i <= m; i++) {
55 std::cout << "Podaj krawedz - dwa wierzcholki oraz koszt (wage): " << std::endl;
56 std::cin >> w1 >> w2 >> koszt;
57 krawedzie.push_back ({ w1 , w2 , koszt });
58 }
59 kruskal(n, drzewo , krawedzie);
60 }

Listing 1. Metoda spójnych składowych

2.5. Złożoność obliczeniowa metody

Algorytm Kruskala, w którym zastosowano metodę spójnych składowych, charakteryzuje się złożono-
ścią czasową równą O(nm), gdzie n oznacza liczbę wierzchołków w grafie, am— liczbę krawędzi łączących
te wierzchołki. W fazie przygotowania, która obejmuje inicjalizację tablicy składowych złożoność oblicze-
niowa wynosi O(n +m). Kolejną fazą działania algorytmu jest sortowanie krawędzi niemalejąco według
ich wag. Ten etap posiada złożoność obliczeniową O(m logm). Ostatnim etapem jest budowanie minimal-
nego drzewa rozpinającego (MST). Podczas jego trwania każda krawędź jest analizowana, a w przypadku
połączenia dwóch różnych składowych konieczne jest przejście po wszystkich wierzchołkach grafu w celu
aktualizacji numerów składowych, co prowadzi do złożoności O(n) dla każdej krawędzi. W rezultacie,
całkowita złożoność etapu scalania składowych wynosi O(nm).

3. Metoda z użyciem struktury zbiorów rozłącznych

3.1. Szczegółowy opis metody

Struktura zbiorów rozłącznych służy do zarządzania zbiorami. Główną ideą jest szybkie wykrywanie
cykli bez przeszukiwania grafu. Struktura zbiorów rozłącznych przechowuje informację o tym, do jakiego

Zastosowanie struktury zbiorów rozłącznych w algorytmie Kruskala 199

komponentu należy każdy wierzchołek [1]. Na początku każdy węzeł stanowi odrębny zbiór. Z każdym
etapem dodawania krawędzi zbiory te są łączone, a operacje przeprowadzane na strukturze pozwalają
zweryfikować, czy dwa wierzchołki znajdują się już w tym samym zbiorze. Jeżeli tak, oznacza to, że do-
danie krawędzi spowodowałoby powstanie cyklu, więc należy ją pominąć. Dzięki temu algorytm Kruskala
tworzy minimalne drzewo rozpinające bez konieczności dodatkowego przeszukiwania grafu. Struktura
zbiorów rozłącznych składa się z dwóch podstawowych operacji: znajdowania (ang. find) oraz połączenia
(ang. union). Pierwsza z nich odpowiada za znalezienie zbioru, do którego należy dany element, spraw-
dzając czy dwa elementy są w tym samym zbiorze, a druga polega na łączeniu, które scala dwa zbiory
w jeden. W celu identyfikacji i odróżniania od siebie zbiorów używa się jednego wyróżnionego elementu
zbioru, zwanego reprezentantem.
Idea działania algorytmu:

1. Inicjalizacja struktury zbiorów rozłącznych. Na początku każdy wierzchołek tworzy odrębny,
jednoelementowy zbiór.

2. Sortowanie krawędzi. Wszystkie krawędzie grafu sortowane są niemalejące według wag (kosztów).

3. Przetwarzanie ciągu posortowanych krawędzi:

• dla wierzchołka x wykonywana jest operacja znajdowania, aby ustalić jego reprezentanta,

• dla wierzchołka y wykonywana jest operacja znajdowania, aby ustalić jego reprezentanta,

• jeżeli reprezentanci zbiorów są różni, krawędź {x, y} zostaje dodana do wynikowego drzewa
rozpinającego, a oba zbiory są scalane operacją połączenia. W przeciwnym przypadku krawędź
jest pomijana, ponieważ jej dodanie spowodowałoby powstanie cyklu.

4. Kontynuacja procesu. Proces trwa aż w drzewie rozpinającym znajdzie się n− 1 krawędzi.

3.2. Metody znajdowania oraz łączenia

Metoda znajdź(x) służy do wyznaczenia reprezentanta zbioru, do którego należy element x. Każdy
zbiór przedstawiany jest w postaci drzewa, w którym korzeń pełni rolę identyfikatora całej składowej.
Działanie funkcji polega na rekurencyjnym przemierzaniu od wierzchołka x w górę drzewa aż do osiągnię-
cia jego korzenia. W celu minimalizacji złożoności kolejnych wywołań stosuje się technikę kompresji ścieżki
(ang. path compression), polegającą na tym, że wszystkie wierzchołki napotkane w trakcie poszukiwania
zostają bezpośrednio połączone z korzeniem.

Metoda połącz(x, y) pozwala na połączenie dwóch rozłącznych zbiorów, w których znajdują się ele-
menty x oraz y. W pierwszym kroku wyznaczani są reprezentanci obu zbiorów: x = znajdź(x) oraz y =
znajdź(y). W przypadku gdy x jest różny od y, zbiory te są łączone poprzez przypisanie jednego z repre-
zentantów jako rodzica drugiego. W celu ograniczenia wzrostu wysokości drzew reprezentujących zbiory
używa się techniki łączenia według rozmiaru (ang. union by size) lub łączenia według rangi (ang. union
by rank). Zarówno w jednym, jak i drugim przypadku drzewo o mniejszej liczbie wierzchołków dołączane
jest do większego z drzew.

3.3. Przedstawienie działania algorytmu

Rozważmy graf nieskierowany, ważony o liczbie wierzchołków n = 10 oraz liczbie krawędzi m = 15

(rysunek 4).

200 M. Kucharczyk, B. Wieczorek

Rysunek 4. Przykładowy graf

• Na początku każdy wierzchołek tworzy osobny, jednoelementowy zbiór, tzn. jest swoim rodzicem
i reprezentantem.

rodzic[x] = x, rozmiar[x] = 1, gdzie x oznacza wierzchołek w grafie.

x 1 2 3 4 5 6 7 8 9 10

rodzic[x] 1 2 3 4 5 6 7 8 9 10

rozmiar[x] 1 1 1 1 1 1 1 1 1 1

• Sortujemy krawędzie niemalejąco według wag (tabela 3).

Krawędź Waga
{1, 2} 1
{5, 6} 1
{5, 7} 1
{3, 4} 2
{4, 5} 2
{6, 7} 2
{8, 10} 2
{3, 10} 3
{5, 8} 3
{6, 8} 3
{9, 10} 3
{1, 9} 4
{2, 3} 4
{4, 10} 4
{5, 10} 4

Tabela 3. Tablica krawędzi oraz wag

Zastosowanie struktury zbiorów rozłącznych w algorytmie Kruskala 201

Rozważamy po kolei krawędzie, wykonując dla każdej procedury: znajdź(x), znajdź(y) oraz opcjo-
nalnie połącz(x, y).

• Rozpoczynamy pierwszą iterację. Rozważmy krawędź {1, 2} o wadze 1. znajdź (1) = 1, znajdź (2)
= 2 → różni reprezentanci. Dodajemy krawędź do MST i wykonujemy połącz (1, 2). Po operacji
uzyskujemy rodzic[2] = 1, rozmiar[1] = 2. Drzewo zawiera krawędź {1, 2}, a koszt częściowy wynosi
1.

x 1 2 3 4 5 6 7 8 9 10

rodzic[x] 1 1 3 4 5 6 7 8 9 10

rozmiar[x] 2 1 1 1 1 1 1 1 1 1

• Kontynuujemy. Rozważamy krawędź {5, 6} o wadze 1. znajdź (5) = 5, znajdź (6) = 6 → różni
reprezentanci. Dodajemy krawędź do MST i wykonujemy połącz (5, 6). Po operacji uzyskujemy
rodzic[6] = 5, rozmiar[5] = 2. MST zawiera krawędzie {1, 2}, {5, 6}, a koszt częściowy wynosi 2.

x 1 2 3 4 5 6 7 8 9 10

rodzic[x] 1 1 3 4 5 5 7 8 9 10

rozmiar[x] 2 1 1 1 2 1 1 1 1 1

• Rozważamy krawędź {5, 7} o wadze 1. znajdź (5) = 5, znajdź (7) = 7 → różni reprezentanci.
Dodajemy krawędź do MST i wykonujemy połącz (5, 7). Po operacji uzyskujemy rodzic[7] = 5,
rozmiar[5] = 3. Drzewo zawiera krawędzie {1, 2}, {5, 6}, {5, 7} a koszt częściowy wynosi 3.

x 1 2 3 4 5 6 7 8 9 10

rodzic[x] 1 1 3 4 5 5 5 8 9 10

rozmiar[x] 2 1 1 1 3 1 1 1 1 1

• Następnie rozważamy krawędź {3, 4} o wadze 2. znajdź (3) = 3, znajdź (4) = 4→ różni reprezentanci.
Dodajemy krawędź do MST i wykonujemy połącz (3, 4). Po operacji uzyskujemy rodzic[4] = 3,
rozmiar[3] = 2. MST zawiera krawędzie {1, 2}, {5, 6}, {5, 7}, {3, 4} a koszt częściowy wynosi 5.

x 1 2 3 4 5 6 7 8 9 10

rodzic[x] 1 1 3 3 5 5 5 8 9 10

rozmiar[x] 2 1 2 1 3 1 1 1 1 1

• Rozważamy krawędź {4, 5} o wadze 2. znajdź (4) = 3, znajdź (5) = 5 → różni reprezentanci.
Dodajemy krawędź do MST i wykonujemy połącz (4, 5). Po operacji uzyskujemy rodzic[3] = 5,
rozmiar[3] = 2, rozmiar[5] = 5. MST zawiera krawędzie {1, 2}, {5, 6}, {5, 7}, {3, 4}, {4, 5} a
koszt częściowy wynosi 7. Krawędzie dodane do drzewa przedstawiono na rysunku 5.

x 1 2 3 4 5 6 7 8 9 10

rodzic[x] 1 1 5 3 5 5 5 8 9 10

rozmiar[x] 2 1 2 1 5 1 1 1 1 1

• Krawędź {6, 7} o wadze 2. znajdź (6) = 5, znajdź (7) = 5 → ten sam reprezentant. Krawędź tworzy
cykl, więc pomijamy. MST pozostaje bez zmian.

202 M. Kucharczyk, B. Wieczorek

Rysunek 5. Częściowe drzewo rozpinające

• Kontynuujemy analogicznie aż do drzewa dołączonych zostanie n− 1 krawędzi.

Minimalne drzewo rozpinające zawiera następujące krawędzie: {1, 2}, {5, 6}, {5, 7}, {3, 4}, {4, 5}, {8,
10}, {3, 10}, {9, 10}, {1, 9} a koszt całkowity wynosi 19 (rysunek 6).

x 1 2 3 4 5 6 7 8 9 10

rodzic[x] 5 1 5 3 5 5 5 5 5 5

rozmiar[x] 2 1 2 1 10 1 1 2 1 1

Rysunek 6. Minimalne drzewo rozpinające

Zastosowanie struktury zbiorów rozłącznych w algorytmie Kruskala 203

3.4. Przykładowa implementacja

Przykładową implementację algorytmu Kruskala z wykorzystaniem struktury zbiorów rozłącznych
przedstawiono w listingu 2. Rozwiązanie zostało podzielone na trzy główne funkcje: znajdz, polacz, kru-
skal. Główna funkcja kruskal realizuje właściwy algorytm znajdowania minimalnego drzewa rozpinające-
go.

1 #include <iostream >
2 #include <vector >
3 #include <algorithm >
4

5 // Struktura reprezentuj ca k r a w d w grafie
6 struct krawedz
7 {
8 int x, y;
9 long long koszt;

10 };
11 // Funkcja z n a j d u j c a reprezentanta zbioru
12 int znajdz(int x, std::vector <int >& rodzic)
13 {
14 if (x != rodzic[x])
15 rodzic[x] = znajdz(rodzic[x], rodzic);
16 return rodzic[x];
17 }
18 // Funkcja czca dwa zbiory
19 void polacz(int x, int y, std::vector <int >& rodzic , std::vector <long long >& rozmiar)
20 {
21 x = znajdz(x, rodzic);
22 y = znajdz(y, rodzic);
23 if (x == y)
24 return;
25 // zawsze p r z y c z a m y mniejszy z b i r do w i k s z e g o
26 if (rozmiar[x] < rozmiar[y])
27 std::swap(x, y);
28 rodzic[y] = x;
29 rozmiar[x] += rozmiar[y];
30 }
31 // G w n a funkcja algorytmu Kruskala
32 void kruskal(int n, int m, std::vector <std::pair <int , int >>& drzewo , std::vector <

krawedz >& krawedzie)
33 {
34 // Inicjalizacja struktur
35 std::vector <int > rodzic(n + 1);
36 // k a d y z b i r ma p o c z t k o w o rozmiar r w n y 1
37 std::vector <long long > rozmiar(n + 1, 1);
38 for (int i = 1; i <= n; i++)
39 {
40 rodzic[i] = i;
41 }
42 // Sortowanie k r a w d z i n i e m a l e j c o w e d u g wag
43 sort(krawedzie.begin (), krawedzie.end(), [](const krawedz& a, const krawedz& b)
44 {
45 return a.koszt < b.koszt;
46 });
47 long long suma = 0;
48 int i = 0;

204 M. Kucharczyk, B. Wieczorek

49 while (drzewo.size() < n - 1)
50 {
51 // j e l i k r a w d czy r n e zbiory , to dodajemy j do MST
52 if (znajdz(krawedzie[i].x, rodzic) != znajdz(krawedzie[i].y, rodzic))
53 {
54 drzewo.push_back ({ krawedzie[i].x, krawedzie[i].y });
55 polacz(krawedzie[i].x, krawedzie[i].y, rodzic , rozmiar);
56 suma += krawedzie[i].koszt;
57 }
58 i++;
59 }
60 std::cout << "Minimalne drzewo rozpinajace = " << suma;
61 }
62 int main()
63 {
64 int n, m, w1 , w2;
65 long long koszt;
66 //Lista k r a w d z i n a l e c y c h do MST
67 std::vector <std::pair <int , int >> drzewo;
68 //Lista wszystkich k r a w d z i
69 std::vector <krawedz > krawedzie;
70 std::cout << "Podaj liczbe wierzcholkow: " << std::endl;
71 std::cin >> n;
72 std::cout << "Podaj liczbe krawedzi: " << std::endl;
73 std::cin >> m;
74 for (int i = 1; i <= m; i++)
75 {
76 std::cout << "Podaj krawedz - dwa wiercholki oraz koszt (wage): " << std::endl;
77 std::cin >> w1 >> w2 >> koszt;
78 krawedzie.push_back ({ w1 , w2 , koszt });
79 }
80 kruskal(n, m, drzewo , krawedzie);
81 }

Listing 2. Metoda z zastosowaniem struktury zbiorów rozłącznych

3.5. Złożoność obliczeniowa

Złożoność obliczeniowa algorytmu Kruskala z wykorzystaniem struktury zbiorów rozłącznych zależy
od dwóch głównych etapów jego działania: sortowania krawędzi oraz procesu łączenia zbiorów w struk-
turze. W pierwszym etapie wszystkie krawędzie grafu są sortowane niemalejąco według wag, dla grafu o
m krawędziach sortowanie wymaga czasu O(m logm). Drugi etap polega na iteracyjnym przetwarzaniu
krawędzi i sprawdzaniu, czy oba wierzchołki należą do różnych zbiorów. Operacje te są realizowane za
pomocą funkcji znajdowania, połączenia, które umożliwiają szybkie scalanie wierzchołków. Dzięki zasto-
sowaniu optymalizacji, takich jak kompresja ścieżek oraz łączenie według rozmiaru lub rangi, każda z
tych operacji jest wykonywana w czasie zbliżonym do stałego – O(α(n)), gdzie α(n) to bardzo wolno
rosnąca odwrotność funkcji Ackermana, uznawana praktycznie za stałą. Złożoność tego etapu jest więc
O(mα(n)). Łączna złożoność obliczeniowa algorytmu Kruskala wynosi O(m logm).

Zastosowanie struktury zbiorów rozłącznych w algorytmie Kruskala 205

4. Podsumowanie

W niniejszym artykule przedstawiono dwa podejścia do realizacji algorytmu Kruskala: z wykorzysta-
niem struktury zbiorów rozłącznych oraz metodę opartą na spójnych składowych. Omówiono zasady ich
działania, różnice implementacyjne oraz wpływ na złożoność obliczeniową. Analiza wykazała, że zastoso-
wanie struktury zbiorów rozłącznych zapewnia wyższą wydajność, zwłaszcza w przypadku dużych grafów,
natomiast podejście oparte na spójnych składowych, choć bardziej intuicyjne, okazuje się mniej efektywne.
Poza omówionymi w artykule metodami wyznaczania minimalnego drzewa rozpinającego istnieją również
inne algorytmy, takie jak Prima-Dijkstry oraz Borůvki.

Literatura

1. Robert Endre Tarjan. Efficiency of a Good But Not Linear Set Union Algorithm., [w:] J. ACM
Association for Computing Machinery, April 1975, New York, USA, 215–225. https://doi.org/10.
1145/321879.321884

2. Haiming Li, Qiyang Xia, Yong Wang. Research and Improvement of Kruskal Algorithm, [w:] Jo-
urnal of Computer and Communications, January 2017, 63-69. https://www.researchgate.net/
publication/320714849_Research_and_Improvement_of_Kruskal_Algorithm

